Brooklyn bridge workers

America’s Industrial Revolution and ingenuity brought about many important advances in worker safety and PPE (Personal Protection Equipment).

At the start of the American Industrial Revolution, worker safety and health were nowhere near the priority they are today. As manufacturing grew, so too did worker injuries and deaths. The idea of safe work grew slowly from a small glimmer to a bright flame inside the collective consciousness of the American workforce.

Although the creation of OSHA regulations was many decades away, the evolution of PPE progressed on its own with the creation of new types of protective devices and advancements in pre-existing devices. Much of this early PPE had a major influence on worker safety’s advancement and will continue to do so.

Hard-Headed PPE Golden Gate Bridge
San Francisco’s Golden Gate Bridge, built in 1933, is an excellent early example of PPE’s influence on safety. Constructing a cable-suspension bridge that was 4,200 feet long was a task that had not been attempted before, one that presented many hazards. The project’s chief engineer, Joseph Strauss, was committed to making its construction as safe as possible.

The bridge’s construction played a particularly significant role in the successful development of one form PPE: It was the first major project that required all of its workers to wear hard hats. Although the hard hat was in its infancy at the time, head protection wasn’t new; gold miners had learned long before the importance of taking steps to protect against falling debris. Michael Lloyd, head protection manager at Bullard – a company in business since 1898, said many early miners wore bowler hats, which were hard felt hats with rounded crowns. Often dubbed “Iron Hats,” these were stuffed with cotton to create a cushioning barrier against blows.

Inspired by the design of his “doughboy” Army helmet, Edward Bullard returned home from World War I and began designing what was to become known as the “hard-boiled hat.” The hat was made of layered canvas that was steamed to impregnate it with resin, sewn together, and varnished into its molded shape. Bullard was awarded the patent in 1919. Later that year, the Navy approached Bullard with a request for some sort of head protection for its shipyard workers. The hat’s first internal suspension was added to increase its effectiveness, and the product’s use quickly spread to lumber workers, utility workers, and construction workers. By the time of the Hoover Dam’s construction in 1931, many workers were voluntarily wearing the headgear. Soon after, the Golden Gate Bridge construction provided a true test of the hard hat’s protective capability because falling rivets were one of the major dangers during the project.

Other innovations came in the form of different materials. In 1938, Bullard released the first aluminum hard hat. It was more durable and comfortable, but it conducted electricity and did not hold up well to the elements. In the ’40s, phenolic hats became available as a predecessor to fiberglass hats. Thermoplastics became the preferred material a decade later for many head protection products; it’s still used by many manufacturers today.
PPE-Hard-hats
From Left to right: Vintage Bullard Miners hats, Vintage Bullard Hard Boiled Hard Hat 1930’s (Used on the Golden Gate Bridge Project, Hard Boiled aluminum Safety hard hat w/Liner and a current day hard hat

In 1953, Bullard introduced the process of injection-molded hats. “Before, [thermoplastic] was kind of laid out on a mold. In the injection-mold process you actually have a closed mold that you pump into. It makes a more consistent helmet and a higher-quality product, which in the long run is also going to be the same thickness all the way through. It’s going to be a safer helmet,” Lloyd said.

Despite the hard hat’s effectiveness and relatively low cost, its use wasn’t officially required at most job sites until the passage of the Occupational Safety and Health Act in 1970. OSHA’s head protection standard, 1910.135, obligated employees to protect workers and instructed manufacturers and employers to turn to the American National Standards Institute’s Z89.1 standard for the appropriate usage guidelines.

Many new materials have since been created, such as the use of General Electric’s high-heat-resistant polyphthalate-carbonate resin in firefighters’ helmets. New hard hats have been designed that provide side protection, which are designated type 2 hats in ANSI Z89.1. “A hard hat was originally designed to protect if something falls from that sky and hits you in the head,” Lloyd said. “But what happens if you run into something? What happens if you bend over and something hits your helmet?”

Because hard hats are a mature market, except for the development of other materials, most innovations will be comfort features and technologies enabling them to withstand different temperature extremes, Lloyd predicted. Easier-to-use designs are appearing that allow users to adjust a hard hat’s suspension with one hand. In the last couple of years, manufacturers have come up with different types of vented helmets designed to help workers keep cool. Hats are accessorized with attachable face shields, visors, and ear muffs, and some have perspiration-absorbing liners. Some come with AM/FM radios, walkie-talkies, and camcorders.

Netting a Safe Return
Although primitive by today’s standards, the solution for the problem of falls also was addressed during construction of the Golden Gate Bridge. Three years into the construction, delays had convinced Strauss to invest more than $130,000 (these were Depression-era dollars, remember) on a vast net similar to those used in a circus. Suspended under the bridge, it extended 10 feet wider and 15 feet farther than the bridge itself. This gave workers the confidence to move quickly across the slippery steel construction. There were reports of workers being threatened with immediate dismissal if found purposely diving into the net.

Strauss’ net was heralded as a huge success until the morning of Feb. 16, 1937, when the west side of a stripping platform bearing a crew of 11 men broke free from its moorings. After tilting precariously for a moment, the other side broke free and the platform collapsed into the net, which contained two other crew members who were scraping away debris. One platform worker, Tom Casey, managed to jump and grab a bridge beam before the platform fell; he hung there until rescued. The net held the platform and the others for a few seconds before it ripped and fell into the water. Two of the 12 men who fell survived.

Read the original article here.

At Hercules SLR we provide a wide range of PPE solutions, from Lanyards and harnesses, to hard hats and rescue equipment.  We also repair, service and certify PPE equipment. We stock leading industry brands and can provide you with expert advise on your PPE options depending on your project. Call us on 1-877-461-4876 for more information.

———————————————————————————————————————————————————

Hercules SLR is part of the Hercules Group of Companies which offers a unique portfolio of businesses nationally with locations from coast to coast. Our companies provide an extensive coverage of products and services that support the success of a wide range of business sectors across Canada including the energy, oil & gas, manufacturing, construction, aerospace, infrastructure, utilities, oil and gas, mining and marine industries.

Hercules Group of Companies is comprised of: Hercules SLRHercules Machining & Millwright ServicesSpartan Industrial MarineStellar Industrial Sales and Wire Rope Atlantic.